A Few Thoughts on Jury Duty

I spent last week sitting on a jury for King County.  The experience left me with a couple of thoughts about our system of justice.  Also a few thoughts about real estate, the subject of the trial:

1.  Never accept a deal with a dual agent -- one in which the same agent represents both the buyer and the seller.  Shenanigans ensue.

2.  Read all contracts thoroughly.  No more skimming and nodding as if you understand.

3.  Never get into a real estate deal for your primary residence that gets anywhere near taxing your resources.

So much for the plaintiff and the defendant.

And now for the jury system itself.  I had never sat on a jury before, and I am glad I had the experience.  I could have gotten myself excused as a sole proprietor given the expected length of the trial, as did several of my original panel, but I decided I should do my civic duty and give society a week of my time.

So far so good.

But now we have 12 jurors (plus the alternate, during the trial) sitting for a week getting paid all of $10 per day.  And for a trial that basically boiled down to avoidable negligence on the part of the defendant, negligence that wound up costing the plaintiff dearly.  Yes, the defendant deserved to be found negligent, and the plaintiff deserved to be compensated.  And we awarded the plaintiff about $400K in damages, which was no small potatoes in this case.

But having the jury of 12 sit there for a week cost, very roughly, at least $50K in lost salaries and benefits.  To which we must add court costs including salaries, rent, etc., on the courthouse for as long as the case was open (about a year).  I'll bet the citizens of King County (including the jurors) spent nearly as much as the total damages.

In the end, while I certainly acknowledge the importance of jury trials to our democracy, it isn't clear to me that it is a good use of society's resources to spend so much on a case like this.  Perhaps binding arbitration would have served the same ends?  Or maybe that just winds up looking like a trial before a judge?  And the defendant went for trial by jury.

Perhaps this is just the cost we pay for a civil, democratic society.

"Democracy is the worst form of government except for all the others", and all that.

Presidential Bioethics Commission Presentation

Here are the archived video and slides from last week's meeting of the Presidential Commission for the Study of Bioethical Issues.  And here is the session with presentations from Drew Endy, Bonnie Bassler, and myself, followed by questions and discussion with the Commission and public.

Browser warning: When I ran it, something about the combination of Flash and the slide viewer caused Safari to freeze; Firefox was just fine.

Presidential Commission for the Study of Bioethical Issues (Updated, and errata)

Here are the annotated slides (PDF) from my presentation this morning to the Presidential Commission for the Study of Bioethical Issues.  (Update -- A word to the wise; a "crore" is an Indian unit indicating 10,000,000.  We had an errant extra zero in our database, and I have now fixed the Indian biotech GDP number to reflect the correction.)

Now sitting in the audience, I've just heard Jim Thomas of ETC once again egregiously distort the Keasling-Amyris-malaria-artemisinin story.  As usual he is quite well-spoken and reasonable sounding, and uses rhetoric well to his ends.

It may be true, as Thomas asserts, that switching artemisinin production to fermentation will harm the economic livelihood of "a few thousand" (his words) farmers in China and Africa.  But he has left out of his calculation the 40% of the world's population that is at risk of malaria every year.  He has left out the millions of children who die annually from malaria.

Quoting from my book (pg.98 -- I've left out the references as I am liveblogging from the meeting):

The cost burden of the disease on individual families is highly regressive.  The average cost per household for treating malaria may be in the range of only 3-7 percent of income, but total and indirect costs to poor households can amount to one-third of annual income.  The disease also disproportionately affects the young. Approximately 90percent of those who are killed by the parasite are African children under the age of five; according to the World Health Organization (WHO), a child dies from malaria roughly every thirty seconds.

In addition to staggering personal costs, the disease harms whole societies by severely inhibiting economic development. In affected countries, malaria reduces GDP growth by about 1.3 percent per year. These countries, moreover, contain about 40percent of the world's population. Over the past forty years, the growth penalty has created a difference in GDP that substantially exceeds the billions in annual foreign aid they receive. In 2000 the World Health Organization estimated that eliminating this growth penalty in 1965 would have resulted in "up to $100 billion added to sub-Saharan Africa's [2000] GDP of $300 billion. This extra $100 billion would be, by comparison, nearly five times greater than all development aid provided to Africa [in 1999]."

Because there was no technical means to eliminate the parasite in the middle of the twentieth century, this is clearly a number calculated to impress or shock, but the point is that the growth penalty continues to balloon. As of 2008, the GDPs of countries in sub-Saharan Africa would be approximately 35 percent higher than they are today had malaria been eliminated in 1965. The World Health Organization reckons that malaria-free countries have a per capita GDP on average three times larger than malarious countries.  The productivity of farmers in malarious countries is cut by as much as 50 percent because of workdays lost to the disease.  The impact of producing an effective and inexpensive antimalarial drug would therefore be profound.
 
Improving access to other technologies, such as bed nets treated with insecticides, would also be of substantial aid in reducing the rate of infection.  Yet infected victims will still need access to cures. Prevention might be found in a vaccine, which the Gates Foundation also funds. However, even the most promising malaria vaccine candidates are only partially effective and cost even more than artemisinin. Microbial production of artemisinin would completely change the impact of malaria on billions of people worldwide.  Artemisinin is presently derived from the wormwood tree and has been used as an herbal remedy for at least two thousand years. Its antimalarial activity was first described by Chinese scientists in 1971.  The existence of the drug and its physiochemical properties were announced to the world in 1979, although its precise molecular mechanism of action is still not understood. A method for chemical synthesis was published in 1983, but it remains "long, arduous, and economically nonviable."
 
Because natural artemisinin is an agricultural product, it competes for arable land with food crops, is subject to seasonal variations in supply, and its production costs are in part determined by the costs of fertilizer and fuel. As a result of the work of Keasling and his collaborators, it appears that, within just a few years, biological technology may provide a more-flexible and less-expensive supply of drugs than now exists. Commercial production of artemisinin should commence in 2010, with a continuous annual production sufficient to treat the 500million malaria cases per year.

So, Mr. Thomas, what about all the people who will benefit from inexpensive malaria drugs?  It is, frankly, unconscionable and indefensible for you to continue beating this drum as you do.  The human cost of not producing inexpensive artemisinin in vats is astronomical.  If reducing the burden of malaria around the world on almost 2 billion people might harm "a few thousand" farmers, then we should make sure those farmers can make a living growing some other crop.  We can solve both problems.  Your ideological opposition to synthetic biology is is blinding you to the opportunities, and your version of reality would ignore the health and welfare of children around the world.

How's that for rhetoric?

Update:  One other thought.  Just one year of 1.3% GDP growth recovered by reducing (eliminating?) the impact of malaria would more than offset paying wormwood farmers to grow something else.  There is really no argument to do anything else.

For a "Civil Society" organization, ETC is being decidedly uncivil on this issue.  

A Few Thoughts on Water

Years ago, I frequently commuted between Los Angeles and Seattle by air.  The contrast between the two cities was always a bit jarring, particularly in July and August -- high summer on the west coast of North America -- when the lawns in Seattle are brown while all the residential yards in Los Angeles are a beautiful emerald green.  Summer rainfall in Seattle is usually about 1.8 inches spread over those two months, while Los Angeles is essentially dry.

A couple of weeks ago I flew into LAX from the east coast and got another perspective on water use there.  My first glimpse of the basin was the smog lapping up against the rim of the San Gabriel Mountains. I managed to snap a quick photo after we had flown over the ridge (the smog is on the lower left, though the contrast was more impressive when we were looking from the east side).

IMG_0477.JPGEven in May it looks a little dry 'round those parts.

A few minutes later, I noticed large green patches covering the sides (usually the west side) of hills.  This continued all the way to downtown LA, and we were high enough for most of that time that I couldn't figure out why the locals were spending so much of their precious water keeping the sunset sides of hills green.  Then, finally, we passed over one low enough that the purpose jumped out at me.

Cemeteries.

Even in death, Los Angelinos maintain their homage to William Mulholland by keeping him eternally damp.  And in death, Los Angelinos continue to contribute to the smog shown above -- the grass covering the land of the dead is trimmed quite short.  Many, many square miles of it.  A cushy life, have those dead people.  And to be fair to Los Angeles (which, admittedly, is hard for me), Seattle, too, uses a great deal of water and hydrocarbons to keep our decaying ancestors covered with a trim layer of green.  It happens everywhere here.  Welcome to America.

Even the way the US irrigates land to feed the living represents a profligate use of water.  According to the USDA, 80% of the water consumed in this country goes to agriculture. (Note that "use" and "consumption" are often confused.  Agriculture and thermoelectric power generation both "use" about 40% of the nation's freshwater, but while almost 100% of the water used for power generation is returned to where it was taken from -- albeit somewhat warmer than when it was taken -- much of the of water put on crops is does not reach the roots or is evaporated and lost to the atmosphere.)  Notice that I did not use the word "waste", because some of the leakage winds up back in groundwater, or otherwise finds its way into the environment in a way that might be classified as "beneficial".

And pondering water use here in the US, and the impact on our economy, my thoughts turn to water use in Asia.  Much ado was made in the last couple of years about the IPCC report of anomalous melting of Asian glaciers, followed by the discovery that there was no actual data behind the assertion.

A recent paper in Science adds some much needed analysis to the story.  Walter Immerzeel and colleagues set out to understand the relative importance of meltwater and rainwater to river flows in Asia.  It is interesting to me that this sort of analysis wasn't done before now: "Earlier studies have addressed the importance of glacial and snow melt and the potential effects of climate change on downstream hydrology, but these are mostly qualitative or local in nature."

For five large river basins the authors used a combination of precipitation data, snow melt models, and evaporation rates, to calculate the Normalized Melt Index (NMI).  The NMI is the ratio of snow and glacier discharge to downstream discharge.  If all the water in a river downstream is from melting, then this ratio is obviously one; if the ratio is less than one, rainfall contributes more than meltwater, and if it larger than one, more water is lost through evaporation or other processes (like agriculture) and meltwater is more important for total flow.

Here are the results.  For each of the rivers, the authors calculated the percentage of the total discharge generated by snow and glacial melt:
 

Indus

151%

Brahmaputra

27%

Ganges

10%

Yangtze

8%

Yellow

8%

In other words, water supplies in the Indus river valley are largely dependent on meltwater, whereas the large river systems in China appear to be less dependent on meltwater.  That is a very interesting result, because the story told by lots of people (including myself) about the future of water in China is that they are in big trouble due to glacial melting in the Himalayas.  Assuming this result holds up, China may be better off in a warmer world that I had anticipated.

The authors also used various projections of snow and rainfall to estimate what water supplies would look like in these rivers in 2050.  As you might expect, a warmer world leads to less snowfall, more melting, and lower river flows.  But as the warmer world brings increased rainfall, the impact is smaller than has been widely assumed.  I am not going to bother putting any of the numbers in here, because, as the authors note, "Results should be treated with caution, because most climate models have difficulty simulating mean monsoon and the interannual precipitation variation, despite recent progress in improving the resolution of anticipated spatial and temporal changes in precipitation."

But they went one step further and tried to estimate the effects of potential decreased water supply on local food supplies.  Couched in terms of crop yields, etc., Immerzeel et al estimate that the Brahmaputra will support about 35 million fewer people, the Indus will support about 26 million fewer people -- that's food for 60 million fewer people in India and Pakistan, if you are counting -- and the Yellow about 3 million more people.  Finishing up, they write:

We conclude that Asia's water towers are threatened by climate change, but that the effects of climate change on water availability and food security in Asia differ substantially among basins and cannot be generalized. The effects in the Indus and Brahmaputra basins are likely to be severe owing to the large population and the high dependence on irrigated agriculture and meltwater. In the Yellow River, climate change may even yield a positive effect as the dependence on meltwater is low and a projected increased upstream precipitation, when retained in reservoirs, would enhance water availability for irrigated agriculture and food security.

I am perplexed by the take on these results over at Nature News by Richard Lovett.  His piece carries the title, "Global warming's impact on Asia's rivers overblown".  I'll give Lovett the out that he may not have written the actual headline (Editors!), but nonetheless he sets up the Immerzeel paper as a big blow to some unnamed group of doomsayers.  Perhaps he imagines that Immerzeel completely undermines the IPCC report?  This is hardly the case.  As I wrote last January, sorting out the mistake over Himalayan melting rates is an example of science working through a blunder.  Instead overturning some sort of vague conspiracy, as best I can tell Immerzeel is simply the first real effort to make quantitative assessments of something to which much more attention should have been paid, much earlier than it was.

And even Lovett appears to acknowledge that reducing the human carrying capacity of the Brahmaputra and Indus river valleys by 60 million people is something to be concerned about.  From Lovett: 

The findings are important for policy-makers, says Jeffrey Kargel, a glaciologist at the University of Arizona in Tucson. "This paper adds to mounting evidence that the Indus Basin [between India and Pakistan] is particularly vulnerable to climate change," says Kargel. "This is a matter that obviously concerns India and Pakistan very much."

Indeed.  As they should concern us all.

Yummy, Corrosive Biodiesel

Yummy for microbes, that is.  Who turn the methyl esters in biodiesel -- with some intermediate steps -- into hydrogen sulfide that corrodes carbon steel.

This according to a paper last month in Energy & Fuels, Aktas et al explore "Anaerobic Metabolism of Biodiesel and Its Impact on Metal Corrosion".  The authors observe that "Despite the global acceptance of biodiesel, the impact of integrating this alternate fuel with the existing infrastructure has not been fully explored."

Here is a paragraph from the paper, full of interesting tidbits:

The chemical stability characteristics of biodiesel are well-documented,(3, 4) but the susceptibility of this fuel to biodegradation is not well-known. Biodiesel methyl esters are sparingly soluble in seawater, with a saturation concentration of 7 ppm at 17 °C.(5) Several studies showed that aerobic microorganisms readily degrade biodiesel.(6-8) The half-life for the biodegradation of the vegetable methyl esters in agitated San Francisco Bay water was less than 4 days at 17 °C.(9) However, anaerobic conditions prevail whenever heterotrophic microbial respiration consumes oxygen at a rate that exceeds diffusion. This is typically the case in subsurface environments, including oil reservoirs,(10-12) oil-contaminated habitats,(13) refineries, storage vessels, pipelines, oil−water separators, and ballast tanks.

In particular, it is interesting that biodiesel spills might be metabolized by bugs in the environment at a much greater rate than petrodiesel.  Next, it is interesting that our steel infrastructure might be susceptible to more rapid degradation with the inclusion of bio-products.  Plastics, anyone?

The paper concludes:

Our studies suggest that biodiesel can be quite easily hydrolyzed and converted to a variety of fatty acid intermediates by anaerobic microorganisms, regardless of their previous hydrocarbon- or biodiesel-exposure history. The acidic nature of these intermediates accelerates the pitting corrosion process of the most common metal alloy used throughout the fuel infrastructure.(39) The corrosion of pipelines, tanks, storage units, and associated equipment increases the risk of the release of hazardous materials to the environment, with concomitant pollution issues. With the widespread use of biodiesel as an additive to fuel supplies, it is at least prudent to consider how best to avoid the negative consequences associated with the microbial metabolism of these labile fuel components.

Something to watch, obviously.