Garage Biology in Silicon Valley

A couple of weeks ago I made a whirlwind trip to San Francisco that turned out to be all about garage biology.  I started off with a talk to the California Assembly Select Committee on Biotechnology.  Here are my slides (Carlson_CA_Assembly_February_2010.pdf), which focus on the role of small business and garage hackers in creating innovation in the Bioeconomy, and here is the agenda (PDF).  See my recent post on "Micro-Brewing the Bioeconomy" for the details of craft brewing as an example of distributed biological manufacturing.  I also did an event at the GBN for the book, and I'll post a link to the recording when it goes live.

I spent most of one Saturday hanging out at a garage biology lab in Silicon Valley.  When I walked in the door, I was impressed by the sophistication of the set-up.  The main project is screening for anti-cancer compounds (though it wasn't clear to me whether this meant small molecules or biologics), and the people involved have skillzzz and an accumulation of used/surplus equipment to accomplish whatever they want; two clean/cell-culture hoods, two biorobots (one of which is being reverse engineered), incubators, plate readers, and all the other doodads you might need.  They aren't messing around.  I didn't get into the details of the project, but the combination of equipment, pedigree, and short conversations with the participants told me all I needed to know.  That doesn't mean they will be successful, of course, just that I believe they are yet another example of what can be attempted in a garage.  This sort of effort is where new jobs, new economic growth, and, most importantly, desperately needed new technologies come from.  Garage innovation is at the heart of the way Silicon Valley works, and it is envied around the world.

IMG_0173.jpg
IMG_0174.jpgI continue to get push back from people who assert that "it is really too hard" to hack biology in a garage, or too expensive, or that garage labs just can't be up to snuff.  This sort of dissent usually comes out of National Labs, Ivy League professors, or denizens of the beltway.  All I can say to this is -- Doodz, you need to get out more.

So why am I not telling you the who and the where for the photos above?  Because, like many garage biology hackers, they are a little skittish given the way the Uncle Sam has been off his rocker for the last few years when it comes to mis-perceived biothreats (Shoot first, Google later).  The people who built the lab pictured above are pursuing a project that is technically well beyond anything discussed on the DIYBio list, and while they may be watching the DIYBio conversation they don't advertise what they are up to.  It would be better for all of us if we could rest assured that conversations about this sort of work could proceed in the open without guys showing up in biohazard suits with weapons drawn -- Youtube, at the 00:00:48 mark.  Words fail to describe this video.  Or, rather, I have plenty of choice words to describe the quality of the investigation and planning that went into an armed assault on the residence of an art professor whose many previous public shows and events included biological technologies including hacked bacteria -- and indeed I have shared those words with the appropriate individuals in DC, and will do so again -- but it won't do my blood pressure any good to go further down that road here.

While the innocuous art professor may be back at work, and while some may view this as water under the bridge, it is not my impression that Federal law enforcement officials truly understand the impact of their behavior.  (Here, I will try again: Dear Feds, You are making us less safe.)  The response to errant "enforcement"efforts (or "career enhancement", depending on your perspective) is exactly what you would expect -- people stop talking about what they are doing, making the job of sorting out potential threats all that much harder.  I recall giving a talk in DC in 2003 or so wherein I made this point to a room full of intelligence types (domestic and foreign), and only about half of them -- predominantly the younger ones -- understood that information was their only tool in this game.  The notion that you could effectively produce safety through prohibiting garage biology and related efforts is the height of folly.  See, for example, "And the Innovation Continues...Starting with Shake andBake Meth!" for the latest on the effectiveness of domestic prohibition of methamphetamine production.  The effect is -- surprise!!! -- more innovation.  Just like it always is.  However much garage biology we wind up with, we will be much safer if practitioners are willing to discuss what they are up to without worrying about misdirected badges, search warrants, and guns. 

To be sure, I don't have reason to suspect anything but good intentions and productive work originating from the garage lab shown above.  Nor is a drug screening project likely to result in something scary.  But I certainly can't know they won't make a mistake.  I would feel more comfortable if they, in turn, didn't feel like they had to keep a low profile so that there could be open discussion of potential missteps.  This applies to individuals and governments alike: "Above all else, let us insist that this work happens in the light, subject to the scrutiny of all who choose to examine it." (PDF)  And I am waaay more concerned about what the government might get up to behind closed doors than I am about activities of individuals.  

Next week I am headed to DC for another biosecurity/bioterrorism discussion, which will be interesting in light of the recent "F" grade given to US biopreparedness by the President's Commission on the Prevention of Weapons of Mass Destruction Proliferation and Terrorism.  See also my earlier analysis of the report.  I mention this here because the US Government still doesn't get the role of garage biology in much needed innovation (see the slides above from the talk to the CA Assembly Committee for a list of important technical advances from small businesses and individuals -- this discussion is also in the book).  Nor has the US Government clued into the PR job they have ahead of them with students who are gaining skills and who want to practice them in the garage.  Both the FBI and the Biological Weapons Commission Convention (sorry, Piers!) had a presence at iGEM in 2009 -- as liasons to students the FBI sent Agents whose cards read "Weapons of Mass Destruction Coordinator".  !!!Calling Chiat\Day!!!

There continues to be a prominent thread of conversation in Washington DC that "biohacking" is somehow aberrant and strange.  But apparently DIYBio, you'll be happy to hear, is a group composed of the Good Guys.  Everyone should feel happy and safe, I guess.  Or maybe not so much, but not for the reasons you might think.

The creation of a false dichotomy between "DIY Biotech" (good guys) and "Biohacking" (bad guys) lends unfortunate credence to the notion that there is an easily identifiable group of well-meaning souls who embrace openness and who are eager to work with the government.  On the contrary, in my experience there are a number of people who are actively hacking biology in their garages who intentionally keep a low profile (I am not certain how many and know of no existing measure, but see discussion above).  This tally included me until a little over a year ago, though now my garage houses a boat under restoration.  These people often consider themselves "hackers", in the same vein as people who hack computers, boats (!), cars, and their own houses.  Yes, it is all hacking, or Making, or whatever you want to call it, and not only is it generally innocuous but it is also the core of technological innovation that drives our economy.  And without direct interaction, I do not believe it is practical to ascribe motivation or intent to an individual - including and especially an incorporated individual - operating in a garage.  Thus, I strongly object to the establishment of a conversation related to biosecurity in which the term "biohacker" has any pejorative connotations precisely because it perpetuates the misconception that i) this group is quantifiable; ii) that the group has any unified motivations or identifiable ethical norms (or anti-norms); iii) that it can realistically be currently addressed (or assessed) as a "group".

Hmm...with that, I have run out of steam for the moment, and have real work to do.  More later.

Whither Gene Patents?

Wired and GenomeWeb (subscription only) have a bit of reporting on arguments in a case that will probably substantially affect patents on genes.  The case is Association of Molecular Pathology , et al. v. US Patent and Trademark Office, otherwise known as "the BRCA1 case", which seeks to overturn a patent held by Myriad Genetics on a genetic sequence correlated with breast cancer.

Here is a brief summary of what follows: I have never understood how naturally occurring genes can be patentable, but at present patents are the only way to stake out a property right on genes that are hacked or, dare I say it, "engineered".  So until IP law is changed to allow some other form of protection on genes, patents are it.

The ACLU is requesting a summary judgment that the patent in question be overturned without a trial.  Success in that endeavor would have immediate and enormous effect on the biotech industry as a whole, and I doubt the ACLU is going to get that in one go.  (Here is the relevant recent ACLU press release.)

However, the lawsuit explicitly addresses the broader question of whether any patents should have been granted in the first place on human genes.  This gets at the important question of whether isolating and purifying a bit of natural DNA counts as an invention.  Myriad is arguing that moving DNA out of the human genome and into a plasmid vector counts as sufficient innovation.  This has been at the core of arguments supporting patents on naturally occurring genes for decades, and it has never made sense to me for several reasons.  First, changing the context of a naturally occurring substance does not constitute an invention -- purifying oxygen and putting it in a bottle would never be patentable.  US case law is very clear on this matter.  Second, moving the gene to a new context in a plasmid or putting into a cell line for expression and culturing doesn't change its function.  In fact, the whole point of the exercise would be to maintain the function of the gene for study, which is sort of the opposite of invention.  Nonetheless, Myriad wants to maintain its monopoly.  But their arguments just aren't that strong.

GenomeWeb reports that defense attorney Brian Poissant, argued that "'women would not even know they had BRCA gene if it weren't discovered'under a system that incentivizes patents."  This is, frankly, and with all due respect, a manifestly stupid argument.  Mr. Poissant is suggesting that all of science and technology would stop without the incentive of patents.  Given that most research doesn't result in a patent, and given that most patent application are rejected, Mr. Poissant's argument is on its face inconsistent with reality.  He might have tried to argue more narrowly that developing a working diagnostic assays requires a guarantee on investment through the possession of the monopoly granted by a patent.  But he didn't do that.  To be sure, the assertion that the particular gene under debate in this case would have gone undiscovered without patents is an untestable hypothesis.  But does Mr. Poissant really want the judge to believe that scientists around the world would have let investigation into that gene and disease lie fallow without the possibility of a patent?  As I suggested above, it just isn't a strong argument.  But we can grind it further into the dust.

Mr. Poissant also argued "that if a ruling were as broadly applied here as the ACLU would like then it could 'undermine the entire biotechnology sector.'"  This is, at best, an aggressive over generalization.  As I have described several times over the past couple of years (here and here, for starters), even drugs are only a small part of the revenues from genetically modified systems.  Without digging into the undoubtedly messy details, a quick troll of Google suggests that molecular diagnostics as a whole generate only $3-4 billion a year, and at a guess DNA tests are probably a good deal less than half of this.  But more importantly, of the nearly ~2% of US GDP (~$220-250 billion) presently derived from biological technologies, the vast majority are from drugs, plants, or bacteria that have been hacked with genes that themselves are hacked.  That is, both the genes and the host organisms have been altered in a way that is demonstrably dependent on human ingenuity.  What all this means is that only a relatively small fraction of "the entire biotechnology sector" is related to naturally occurring genes in the first place.   

I perused some of the court filings (via the Wired article), and the defense needs to up its game.  Perhaps they think the weight of precedent is on their side.  I would not be as confident as they are. 

But neither is the plaintiff putting its best foot forward.  Even though I like the analysis made comparing DNA patents to attempts to patent fresh fruit, it is unclear to me that the ACLU is being sufficiently careful with both its logic and its verbiage.  In the press release, ACLU attorey Chris Hansen is quoted as saying "Allowing patents on genetic material imposes real and severe limits on scientific research, learning and the free flow of information."  GenomeWeb further quotes the ACLU's Hansen as saying "Patenting human genes is like patenting e=mc2, blood, or air."

As described above, I agree that patenting naturally occurring genes doesn't make a lot of sense.  But we need some sort of property right as an incentive for innovators.  Why should I invest in developing a new biological technology, relying on DNA sequences that have never occurred in nature, if anybody can make off with the sequence (and revenues)?  As it happens, I am not a big fan of patents -- they cost too damn much.  At present, the patent we are pursuing at Biodesic is costing about ten times as much as the capital cost of developing the actual product.  Fees paid to lawyers account for 90% of that.  If it were realistically possible to engage the patent office without a lawyer, then the filing fees would be about the same as the capital cost of development, which seems much more reasonable to me.

I go into these issues at length in the book.  Unfortunately, without Congressional action, there doesn't seem to be much hope for improvement.  And, of course, the direction of any Congressional action will be dominated by large corporations and lawyers.  So much for the little guy.

Here Comes the Wolf Pack

DARPA has just awarded $32 million to Boston Dynamics to build a deployable version of BigDog, the Legged Squad Support System (LS3).  Here is coverage at NetworkWorld, and here is Gizmodo's short note.  BigDog is part of the inspiration for my thinking about Cowborgs that wander around fields munching grass and producing biofuel (see "The New Biofactories", from last year's McKinsey Quarterly special What's Next).

But there is another obvious application that has been lurking in the back of my mind.  The spec calls for the following capabilities:

  • The robot must support all manner of walking, trotting, and running/ bounding and capabilities to jump obstacles, cross ditches, recover from disturbances and other discrete mobility features. The LS3 must be able to follow a leader between 5m and 100m ahead, in dynamic, cluttered environments with other moving soldiers in close proximity.
  • It must have the ability to perceive and traverse its immediate terrain environment autonomously with simple methods of control.
  • The robot must understand simple soldier-to-LS3 interaction with minimal direct control of the platform's speed and heading (joy-sticking and tele-operating are examples of direct control). The vehicle must require minimal oversight or direct control (e.g. joystick control) from an operator.  Direct control modes should only be used for error recovery, and should not be needed more than 3 times per 24-hour operational period, for no more than 5 minutes at a time.  

With the sort of stability and mobility required to meet these specifications, there isn't any reason you couldn't mount weaponry on the LS3.  You could imagine all sorts of science fiction scenarios with Miniguns or Vulcans, which for all I know might have serious mass issues for either the armament or the ammunition, or might sport too much recoil.  But it would probably be enough to mount cartridge fed shotguns or smaller grenade launchers, or any other weapons platforms now fielded on ROVs.  The combination of autonomous terrain traversing, navigation, and operation from a distance suggest that even early versions could be directed to walk into hostile situations while troops remained out of harm's way.  The requirement to "follow a leader" could be altered to "home in on a transponder" delivered by one of the many ROVs already in the field, whether RC car or airplane.

And just as there is no reason to think the US military won't be mounting weapons on BigDog, there is no reason to think the robots won't be operated in groups.  Imagine for a moment that you are a Taliban or Al Qaeda fighter hanging out in a cave, and you probably don't have a lot of exposure to technology other than what the US military is throwing at you on a daily basis.  Into your cave walks a Wolf Pack of armored DevilDogs armed to the...teeth (?) and probably  demanding your surrender in Arabic or Pashtun.  You say no.  They open fire.  Alternate scenario: You are a militant in Afghanistan and your exquisitely planned ambush of NATO troops is interrupted by a Wolf Pack chasing you up into the hills.

I can imagine that both of these scenarios would require a serious programming effort before a BigDog becomes a DevilDog.  But if either scenario works even once, just imagine the impact on enemy morale.  And how long before the LS3 becomes an ordinance delivery platform, walking into an enemy camp with a 400 lb bomb on its back?  Powerful stuff, that, both as a tactical weapon and a morale buster.

I don't know how I feel about this.  Yes, a Wolf Pack of DevilDogs would probably keep our troops safer.  And this might be a more effective way of hunting down bad guys.  But the spectre of increasingly autonomous weapons platforms should make everyone a little uneasy.

Then again, this sort of investment will make the Cowborg happen that much sooner.  Is that worth it as a sort of "peace dividend" spin off from military spending?  Hmmm.

25% of US Grain Crop Used for Biofuel

The Guardian UK reported today that 2009 USDA figures show 25% of grains grown in the US were used to produce liquid biofuels.  The typical food vs fuel story follows.  And it is mostly on point, if tinted by The Guardian's usual populist tone.  Yes, all the grain could in principle be used to feed people.  No, it isn't clear that grain-based ethanol is in fact better than burning petroleum when it comes to total greenhouse gas emissions or energy content.

The story ends with a nod toward "continued innovation in ethanol product" that supposedly is increasing yields and reducing costs.  Huh.  No mention, though, of the fact that any starch crop used to make fuel starts at a major disadvantage with respect to sugar crops, nor that there is an ethanol glut in the US due to construction of too many ethanol production plants.  Neither does the story get into why ethanol isn't a very good fuel to begin with (wrong solvent properties, low energy content, water soluble).

I go into detail about this in my forthcoming book, but the upshot of the argument is that the US is investing quite a lot of money in ethanol production technology and infrastructure that will never be competitive with sugar derived fuels.  And then relatively soon we will get butanol, longer chain alcohols, and true drop-in petroleum replacements made using modified organisms.  In the meantime, I suppose we will just have to suffer through the impact of decisions made more for political reasons than for competitive or national security reasons.  But grain to ethanol isn't really good for anybody except US Senators from farm states.

Good Climate Data, Bad Climate "Data" -- Science Always Wins.

This week brings news of 1) a dramatic improvement in the estimates of how soil carbon content is related to atmospheric carbon concentration and 2) the exposure of some really crappy work on the rate of melting of Himalayan glaciers by the International Panel on Climate Change (IPCC).  The soil carbon work is Good Data, but Bad News if you care about the effects of high atmospheric carbon concentrations, while the Himalayan glacier story is all about terrible peer review and Bad Data (non-existent data, actually), which doesn't help anybody figure out the real story on water supplies in Asia.

First up, a paper from this week's PNAS by Breeker et al at UT Austin, "Atmospheric CO2 concentrations during ancient greenhouse climates were similar to those predicted for A.D. 2100".  Already from the title you can see where this is going.

The problem Breeker and colleagues address is the following: how do you correlate the carbon content of fossil soils with prevailing atmospheric carbon dioxide concentrations?  Well established methods exist for measuring the carbon content of compounds in fossil soil, but less certain were conditions under which chemical reactions produce those particular compounds.  It turns out that model used to infer atmospheric CO2 contained an error.  Breeker determined that the primary compound assayed when determining soil carbon content forms at much lower atmospheric CO2 concentrations than had been assumed.

Prior attempts to correlate soil carbon (and by proxy atmospheric CO2) with greenhouse periods in Earth's climate had concluded that warm periods experienced CO2 concentrations of much greater than ~1000 parts per million (ppm).  Therefore, one might conclude that only when average atmospheric CO2 spiked above this level would we be in danger of experiencing greenhouse gas warming that threatened glaciers.  The correction supplied by Breeker substantially lowers estimates of the average CO2 concentration that is correlated with continental glacial melting.  Eyeballing the main figure in the paper, it looks to me like we could be in real trouble above 450 ppm -- today we are at just shy of 390 ppm and there is no sign we will be slowing down anytime soon, particularly if India and China keep up their pace of development and emissions.

Looking forward to 2100, things get a touch squiffy because Breeker relies on an estimate of CO2 concentrations that come out of model of global economic activity.  So the title of the paper might be a tad alarmist, simply because 2100 is a long way out for any model to be taken too seriously.  But the correction of the paleodata is a big story because at minimum it reduces the uncertainty of atmospheric CO2 levels, and it appears to clarify the connection between CO2 levels and continental glaciation.  More work is needed on the later point, obviously, or this paper would have been on the cover of Science or Nature.

Now on to a serious screw-up at the IPCC.  Elisabeth Rosenthal at the NYT is reporting that "A much-publicized estimate from a United Nations panel about the rapid melting of Himalayan glaciers from climate change is coming under fire as a gross exaggeration."  Here is Andrew Revkin's take on DotEarth, and anyone interested in this story should read through his post.  The comments are worth perusing because some of the contributors actually seem to have additional useful knowledge, though, of course, nut jobs aplenty show up from both sides of the debate over climate change.

In a nutshell, the issue is that the most recent IPCC chapter on glaciers contained a conclusion, advertised as real analysis, that was in fact a speculation by one scientist promulgated through the popular press.  The authors of that section of the IPCC report may have been warned about the unsubstantiated claim.  Contradictory data and analysis seems to have been ignored.

So, to be frank, this is a giant, inexcusable fuck-up.  The IPCC is composed of so many factions and interest groups that this may be a case of simple blundering or of blatant politicization of science.  But here is the beautiful thing about science -- it is self-correcting.  It may take a while, but science always wins.  (See also my post of a couple of years ago, Dispelling a Climate Change Skeptic's "Deception".)  Every newspaper story I have seen about this particular IPCC screw-up notes that it was brought to light by...wait for it...a climate scientist.  It is an excellent public airing of dirty laundry by the community of science.  So while this episode demonstrates that the last official IPCC report on glacial melting in the Himalayas should not be used for any sort of scientific policy recommendation or economic forecast, you can bet that the next report will do a damn fine job on this topic. 

Finally, whether or not the IPCC gets its act together, there are plenty of good data out there on the state of the planet.  Eventually, Science -- with a capital S -- will get the right answer.  The same methodical process that has resulted in computers, airplanes, and non-stick fry pans will inevitably explain what is really going on with our climate.  And if you use computers, fly on airplanes, or eat scrambled eggs then you are implicitly acknowledging, whatever your political or religious persuasion, that you believe in science.  And you better, 'cause science always wins.

Video from The Economist's World in 2010 Festival

The Economist has posted video from the World in 2010 Festival, held in Washington DC in early December.  The Innovation panel is below, with me (Biodesic), Dean Kamen (DEKA Research), Dwayne Spradlin (Innocentive), and Kai Huang (Guitar Hero), moderated by Mathew Bishop (The Economist).  (Here is a link to video selections from the rest of the event.)  I was chatting with a reporter a few days ago who observed that everyone else on the panel is quite wealthy -- hopefully that bodes well for me in 2010.  But maybe I am destined always to be the odd man out.  C-Span is re-running the video periodically on cable if you want to watch it on a bigger screen, but I can't seem to find an actual schedule.  (Here is their web version: Innovation in 2010.)


I have a couple of general thoughts about the event, colored by another meeting full of economists, bankers, and traders that I attended in the last week of December.  I met a number of fantastically accomplished and interesting people in just a few hours, many of whom I hope will remain lifelong friends. 

First, I have to extend my thanks to The Economist -- they have been very good to me over the last 10 years, beginning in 2000 by co-sponsoring (with Shell) the inaugural World in 2050 writing competition.  (Here is my essay from the competition (PDF).  It seems to be holding up pretty well, these 10 years later, save the part about building a heart.  But at least I wasn't the only one who got that wrong.)

Here is a paraphrased conversation over drinks between myself and Daniel Franklin, the Executive Editor of the newspaper.

Me:  I wanted to thank you for including me.  The Economist has been very kind to me over the past decade.
Franklin: Well, keep doing interesting things.
Me:  Umm, right.  (And then to myself: Shit, I have a lot of work to do.)

On to the World in 2010 Festival.  The professional economists and journalists present all seem to agree that we have seen the worst of the downturn, that the stimulus package clipped the bottom off of whatever we were falling into, and that employment gains going forward could be a long time in coming.  Unsurprisingly, the Democratic politicians and operatives who turned up crowed about the effects of the stimulus, while the Republicans who spoke poo-pooed any potential bright spots in, well, just about everything.

At the other meeting I attended, last week in Charleston, SC, one panel of 10 people, composed Federal reserve and private bankers, traders, and journalists couldn't agree on anything.  The recovery would be V shaped.  No, no, W shaped.  No, no, no, reverse square root shaped (which was the consensus at The World in 2010 Festival).  No, no, no, no, L shaped.  But even those who agreed on the shape did not agree on anything else, such as the availability of credit, employment, etc.

Basically, as far as I can tell, nobody has the slightest idea what the future of the US economy looks like.  And I certainly don't have anything to add to that.  Except, of course, that the future is biology.

Here is John Oliver's opening monologue from the Festival.  He was absolutely hilarious.  Unfortunately you can't hear the audience cracking up continuously.  I nearly pissed myself.  Several times.  (Maybe the cocktails earlier in the evening contributed to both reactions.)

Back to Innovation in 2010.  Dean Kamen had this nice bit in response to a question about whether the imperative to invent and innovate has increased in recent years (see 36:20 in the C-Span video): "7 billion people can't be recipients, they have to be part of the solution.  And that is going to require advanced technologies to be properly developed and properly deployed more rapidly than ever before."

To this I can only add that we are now seeing more power to innovate put into the hands of individuals than has ever occurred in the history of humanity.  Let's hope we don't screw up.

Revisiting Mood Hacking with Scents

Following on my post last spring about mood hacking, October brought more hints that behavior can be explicitly modified using scents.  A variety of news outlets picked up on a press release from BYU describing a forthcoming paper in Psychological Science that demonstrates, "that clean scents not only motivate clean behavior, but also promote virtuous behavior by increasing the tendency to reciprocate trust and to offer charitable help."  Here I am quoting from a pre-print, entitled "The Smell of Virtue", cached at the University of Toronto.  The paper describes two experiments in which citrus-scented window cleaner appeared to alter behavior.  I have to say that I found the references to Proust, saints, sinners god, and cleanliness (all that in 4 pages!) to be distractions from the main ideas, not to mention the data.

Here is the ScienceDaily reporting, and here is Time's take.

(Not everyone is happy with the methodology described in the paper, the conclusions, and the way it was written.)

What makes this interesting (to me) is that the researchers don't necessarily imply a direct biological mechanism.  The induced behavior may simply be the result of a learned association.  That is, there is no suggestion that anything about the scent that serves to flip a biological switch that leads to different behavior.  Rather the lead author, Katie Liljenquist of BYU, and her colleagues had  previously demonstrated a link between transgression and a desire for cleanliness (see "Washing Away Your Sins: Threatened Morality and Physical Cleansing", Science, 313(5792), 2006).  "Out, damned spots!" and all that.

The citrus scent may simply something that Prof. Liljenquist's test subjects (probably undergraduates at US universities) have learned to associate with cleanliness.  Would students at Asian universities have the same response to the same scent?  I suppose one way to quickly address this question is to see what sort of scents Asians prefer in their window cleaners.  Here is my point: even though there may be no innate molecular pathway exploited in this "behavior reprogramming", it may still be possible to exploit culturally defined (or perhaps "contextually constructed") neural pathways (from the receptors to the brain) for the purpose of mood hacking.

I am not particularly excited about the possibility of having my own mood hacked without my knowledge.  That this might be accomplished even in the absence of genetically identifiable response pathway should give one pause.  Any molecular pathway responsible for this effect (should it prove reproducible and engineerable) is unlikely to be well understood for many years to come.  But if the results from the citrus-scent study are to be believed, then it is already possible to manipulate behavior using scents, even though we have little idea how to defend against it other than by using more scents.  Perfume warfare.  Lovely.

Can't wait until the iGEM undergraduates get a hold of this.  They have already built bugs that smell like bananas and mint.  When will they start trying to influence the judges' decisions directly using synthetic scent pathways?

WWF Endorses Industrial Biotech for Climate Solutions

A fortnight ago the World Wildlife Fund released a report pushing industrial biotech as a way to increase efficiency and reduce carbon emissions.  Interesting.  Of course, industrial biotech doesn't necessarily require direct genetic modification, but the WWF must know that is an inevitable consequence of heading down this road.  More on this after I get a chance to read the report.

Are We Cutting Off Our GM Nose to Spite Our

News today that a federal judge has rejected the approval of GM sugar beets by the USDA.  The ruling stated that the government should have done an environmental impact statement, and is similar to a ruling two years ago that led to halting the planting of GM alfalfa.  As in that case, according to the New York Times, "the plaintiffs in the [sugar beet] lawsuit said they would press to ban planting of the biotech beets, arguing that Judge White's decision effectively revoked their approval and made them illegal to grow outside of field trials."  The concern voiced by the plaintiffs, and recognized by the judge, is that pollen from the GM beets might spread transgenes that contaminate GM-free beets.

A few other tidbits from the article: sugar beets now supply about half the US sugar demand, and it seems that GM sugar beets account for about 95% of the US crop (I cannot find any data on the USDA site to support the latter claim).  A spokesman for the nation's largest sugar beet processor claims that food companies, and consumers, have completely accepted sugar from the modified beets -- as they should, because it's the same old sugar molecule. 

I got lured into spending most of my day on this because I noticed that the Sierra Club was one of the plaintiffs.  This surprised me, because the Sierra Club is less of a noisemaker on biotech crops than some of the co-plaintiffs, and usually focuses more on climate issues.  Though there is as yet no press release, digging around the Sierra Club site suggests that the organization wants all GM crops to be tested and evaluated with an impact statement before approval.  But my surprise also comes in part because the best review I can find of GM crops suggests that their growing use is coincident with a substantial reduction in soil loss, carbon emissions, energy use, water use, and overall climate impact -- precisely the sort of technological improvement you might expect the Sierra Club to support.  The reductions in environmental impact -- which range from 20% to 70%, depending on the crop -- come from "From Field to Market" (PDF) published earlier this year by the Keystone Alliance, a diverse collection of environmental groups and companies.  Recall that according to USDA data GM crops now account for about 90% of cotton, soy, and corn.  While the Keystone report does not directly attribute the reduction in climate impacts to genetic modification, a VP at Monsanto recently made the connection explicit (PDF of Kevin Eblen's slides at the 2009 International Farm Management Congress).  Here is some additional reporting/commentary.

So I find myself being pulled into exploring the cost/benefit analysis of biotech crops sooner than I had wanted.  I dealt with this issue in Biology is Technology by punting in the afterword:
 

The broader message in this book is that biological technologies are beginning to change both our economy and our interaction with nature in new ways.  The global acreage of genetically modified (GM) crops continues to grow at a very steady rate, and those crops are put to new uses in the economy every day.  One critical question I avoided in the discussion of these crops is the extent to which GM provides an advantage over unmodified plants.  With more than ten years of field and market experience with these crops in Asia and North and South America, the answer would appear to be yes.  Farmers who have the choice to plant GM crops often do so, and presumably they make that choice because it provides them a benefit.  But public debate remains highly polarized.  The Union of Concerned Scientists recently released a review of published studies of GM crop yields in which the author claimed to "debunk" the idea that genetic modification will "play a significant role in increasing food production"  The Biotechnology Industry Organization responded with a press release claiming to "debunk" the original debunking.  The debate continues.

Obviously we will all be talking about biotech crops for years to come.  I don't see how we are going to address the combination of 1) the need for more biomass for fuel and materials, 2) the mandatory increase in crop yields necessary to feed human populations, and 3) the need to reduce our climatic impacts, without deploying biotech crops at even larger scales than we have so far.  But I am also very aware that nobody, but nobody, truly understands how a GM organism will behave when released into the wild.

We do live in interesting times.